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Isotope ratios of heavy elements vary on the 1/10000 level in high temperature materials, providing 

a fingerprint of the processes behind their origin. Ensuring that the measured isotope ratio is precise 

and accurate depends on employing an efficient chemical purification technique and optimised 

analytical protocols. Exploiting the disparate speciation of Cu, Fe and Zn in HCl and HNO3, an anion-

exchange chromatography procedure using AG1-X8 (200–400 mesh) and 0.4 x 7 cm Teflon columns 

was developed to separate them from each other and matrix elements in felsic rocks, basalts, 

peridotites and meteorites. It required only one pass through the resin to produce a quantitative 

and pure isolate, minimising preparation time, reagent consumption and total analytical blanks. 

Using a ThermoFinnigan Neptune Plus MC-ICP-MS, calibrator-sample bracketing with an external 

element spike was used to correct for mass bias. Nickel was the external element in Cu and Fe 

measurements, while Cu corrected Zn isotopes. These corrections were made assuming that the 

mass bias for the spike and analyte element was identical, and it is shown that this did not introduce 

any artificial bias. Measurement reproducibilities were ± 0.03‰, ± 0.04‰ and ± 0.06‰ (2s) for 

δ57Fe, δ65Cu and δ66Zn, respectively. 
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The use of stable isotopes is becoming increasingly important in tracing geological processes. 

Traditionally, variations have only been resolved for light elements, (e.g.,, Li, O or C). This stems from 

the two principles governing the extent of mass-dependent stable isotope fractionation: the 

temperature and the relative mass difference (Δm/m2) (Bigeleisen and Mayer 1947, Urey 1947). As a 

result, meaningful measurement of variations in isotopic abundance of heavy elements (the so-

called “non-traditional” stable isotopes; such as Cr, Cu, Fe, Zn and Mo) has only been realised since 

the development of MC-ICP-MS, where uncertainties are an order of magnitude better than thermal 

ionisation mass spectrometry (TIMS) for elements with high ionisation potentials (Halliday et al. 

1995, Rehkämper et al. 2001, Albarède and Beard 2004). Furthermore, as the magnitude of the 

fractionation decays proportional to 1/T2, high temperature processes demand both highly accurate 

and precise methodology in order to produce useful results. 

 

The disparate geochemical properties of Cu, Fe and Zn render them applicable to different 

processes. The chalcophile nature of Cu lends itself to deciphering metal-sulfide equilibria in iron 

meteorites (Luck et al. 2005, Williams and Archer 2011, Bishop et al. 2012) and the mineralising 

conditions of sulfides (Ehrlich et al. 2004, Markl et al. 2006, Asael et al. 2007, Mathur et al. 2009). 

Copper and Zn isotope variations in carbonaceous and ordinary chondrites suggest two-three-

component mixing during accretion rather than volatile loss of Zn (Luck et al. 2003, 2005). By 

contrast, Lunar mare basalts have very low Zn concentrations (≈ 3 µg g-1) in conjunction with 

predominantly heavy Zn isotope values, a feature ascribed to the volatile-loss of zinc during the 

Moon-forming giant impact by Paniello et al. (2012), a common process in the nascent solar system 

(Herzog et al. 2009, Moynier et al. 2011). Other applications of zinc highlight its tendency to 

partition into fluid phases at magmatic temperatures (Toutain et al. 2008, Telus et al. 2012) and its 

large isotopic fractionation during biological uptake (Moynier et al. 2009, Kunzmann et al. 2013) not 

least of which in animals and humans (Balter et al. 2013, Moynier et al. 2013). Iron may exist in 

multiple valence states (0, 2+, 3+), and, coupled with its abundance as a major element, is well 

suited to elucidating redox processes (Williams et al. 2004, 2012, Rouxel et al. 2005, Severmann et 

al. 2008, Dauphas et al. 2009a, Halverson et al. 2011, Hibbert et al. 2012). As the major constituent 

of planetary cores, metal-silicate fractionation of iron has been investigated as a possible cause of 

isotopic disparity between terrestrial planets (Poitrasson et al. 2005, 2009, Williams et al. 2006, 

Polyakov 2009, Hin et al. 2012). Differences in the composition of basaltic rocks on Earth 
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((Schuessler et al. 2009, Dauphas et al. 2010, Nebel et al. 2013, Teng et al. 2013) and from other 

planets (Poitrasson et al. 2004b, Wang et al. 2012) provide clues as to their petrogenesis, source 

composition and oxidation state. 

While the methodologies for chemical separation and measurement of Cu, Fe and Zn isotopes have 

been in existence for 15 years (Maréchal et al. 1999), they are seldom separated completely from 

one another and their matrix. Additionally, analytical schemes and mass bias corrections vary widely, 

with little consensus on best practices. We attempt to reconcile and refine these methods here, 

where an anion exchange chromatography procedure that quantitatively recovers Cu, Fe and Zn 

from a single aliquot is described. The following improvements are chronicled: 

 

1. The reagents, resin type and dimensions have been tailored to minimise blanks and 

maximise separation between the analyte elements and the matrix, such that only one pass is 

necessary to produce a solution fit for isotopic analysis. 

2. A comparison of the effect of resin characteristics (cross-linkage, particle size) and 

dimensions are made to further optimise the separation. 

3. A quantitative basis for the use of the external substitution correction to account for mass 

bias (Ni for Cu and Fe; Cu for Zn) is provided, in preference to the empirical external normalisation of 

Maréchal et al. (1999). 

4. The dependence of the measurement repeatability on an isotope ratio on the counting 

statistics for each external spike element is highlighted, and threshold values proposed. 

 

Analyses of various reference materials that have different matrices are reported. After evaluation 

of the measurement reproducibilities and comparisons with previously reported values for each 

isotopic system, the results obtained with this methodology are shown to be both precise and 

accurate. 

 

Experimental methods 

Reagents, materials, standard solutions and reference materials 

Double-distilled 10 mol l-1 HCl and 15 mol l-1 HNO3 are used, diluted to lower concentrations as 

necessary with 18.2 MΩ cm purity Milli-Q water. All disposable components (pipette tips, columns 

and test tubes) were rinsed in distilled 2 mol l-1 HCl and Milli-Q water, while Teflon reagent bottles 

were refluxed with concentrated HNO3. BioRad® PolyPrep (polypropylene) columns with a 0.8 cm 

diameter and 4 cm height, were loaded with ≈ 1 ml resin. To characterise the effect of column 
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dimensions on the separation, a second set of custom-made heat-shrunk Teflon columns, with a 0.4 

cm diameter and 7 cm height, resulting in a ≈ 1 ml resin bed, were used. 

 

For isotopic determination of Cu, Fe and Zn, internationally accepted solution reference materials 

were used to bracket the sample data. Copper isotope ratios are given relative to NIST SRM 976 

(Maréchal et al. 1999, Moeller et al. 2012), and those for Fe are quoted against IRMM-014 (Taylor et 

al. 1992), while IRMM-3702 (Ponzevera et al. 2006) was used as the Zn reference, re-normalised to 

JMC 3-0749, commonly known as JMC-Lyon (Maréchal et al. 1999). In all cases, conventional delta 

(δ) notation is used to express the ratios: 

 

 

 
 

(1)  

where n is the numerator isotope and d the normalising isotope, which stays constant for all n 

isotopes of a given element, M. By convention, n > d. 

 

A set of ten geological samples, which included reference materials with varying matrices, was used 

to test the proposed method. Copper, Fe and Zn isotopes were determined in four basalts – three 

from the USGS (BCR-2, BHVO-2 and BIR-1) and JB-2 from the Geological Survey of Japan (GSJ). An 

iron meteorite (Canyon Diablo; Smithsonian Institute), a carbonaceous chondrite (Allende CV3; 

Smithsonian Institute), a mantle-derived olivine (San Carlos Olivine) and an organic-rich shale (SCo-1; 

USGS) were also measured. A granite (JG-2; GSJ) and a peridotite (PCC-1; USGS), which contained 

insufficient Cu in a typical sample load to permit an analysis, were measured for Fe and Zn only. 

 

Sample dissolution 

Complete dissolution of basaltic samples (usually ≈ 25 mg) was achieved on a hot plate at 130 °C 

using PFA Teflon beakers, with an acid ratio of 1HCl:0.5HF:0.2HNO3, at a concentration of 10 mol l-1, 

24 mol l-1 (48%) and 15 mol l-1 respectively. These were left to dissolve until there was no visible 

residue in the beakers, a state achieved in ≈ 48 hr. SCo-1 was also treated with H2O2 to oxidise the 

organic compounds. 

Peridotites, granites, and shales were subjected to a high-pressure bomb dissolution procedure to 

dissolve the resistant phases present in these rocks, namely, spinel, zircon and kerogen. Samples 

were weighed out into 3 ml PFA Teflon vials, and a total of 1.5 ml HNO3:HF was added at a ratio of 
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2:1. Five such beakers were placed in a 125 ml PTFE Teflon capsule housing with 5 ml of Milli-Q 

water to promote a vapour pressure in the capsule. This assembly was sealed in an iron metal bomb 

jacket and heated at 210 °C for 96 hr. 

For both methods, 1 ml 15 mol l-1 HNO3 was added periodically during subsequent evaporation to 

prevent the formation of insoluble fluorides. Following complete evaporation of the acid solution, 

the residue was dissolved in 1 ml 10 mol l-1 HCl, dried down again, and taken up in 1 ml 6 mol l-1 HCl. 

 

Anion exchange chromatography 

 

In our preferred procedure, BioRad AG1-X8 200–400 mesh (0.038–0.075 mm resin bead diameter) 

was used, a strongly basic anion exchange resin, which comprises polymerised styrene, cross-linked 

by divinylbenzene. The resin was cleaned by passing, successively, 3 mol l-1 HNO3, Milli-Q water and 

6 mol l-1 HCl through the columns (Table 1), where the latter step both cleans matrix elements and 

equilibrates the resin by converting it into chloride form. 

 

Techniques employed to separate Cu, Fe and Zn chromatographically almost exclusively exploit their 

differences in speciation in a HCl medium with anion exchange resin (Strelow 1980, Maréchal et al. 

1999, Anbar et al. 2000, Zhu et al. 2002, Luck et al. 2003, Archer and Vance 2004, Poitrasson and 

Freydier 2005, Chapman et al. 2006, Schoenberg and von Blanckenburg 2006, Borrok et al. 2007, 

Gioia et al. 2008, Yamakawa et al. 2009, Larner et al. 2011). Typically, the dissolved sample material 

is loaded in strong (between 6–10 mol l-1) HCl, in which partition coefficients for the resin for 

common matrix elements, including Ca, Mg, Na and K are very low (e.g., Kraus and Nelson 1958). 

Copper is eluted using similar concentration (5–8 mol l-1 HCl, ± ascorbic acid), while Fe, in its ferric 

state, is removed by washing the resin with weak HCl (< 2 mol l-1) or H2O. Zinc is then eluted with 

weak HCl, HNO3 or HBr.  

 

The preferred elution scheme described here utilised a high aspect ratio column set-up (0.4 x 7 cm) 

to improve separation characteristics (see section 'Resin structure'). Samples were loaded onto the 

columns in 0.5 ml 6 mol l-1 HCl, where ferric chlorides in solution were visible as a yellow colouration 

on the resin. HCl (4 ml; mol l-1) was then passed through the columns, resulting in the elution of the 

matrix fraction of the sample (Table 1). Addition of 7 ml of 6 mol l-1 HCl promoted complete elution 

of the Cu, together with a tail of Co. Decreasing the HCl molarity to 0.5 mol l-1 caused Fe (which is 

exclusively ferric) to desorb completely after addition of 3 ml. Zinc was then quantitatively removed 

from the resin with 2.5 ml 3 mol l-1 HNO3. In total, 17 ml of acid were passed through the columns. 
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The three cuts for Cu, Fe and Zn were then evaporated to dryness, and re-dissolved in a few drops of 

concentrated (15.7 mol l-1) HNO3 before being evaporated. This served a dual purpose: to oxidise 

and expel organic species that were leached from the resin bed and could affect mass bias during 

measurements (Shiel et al. 2009) and to convert the analyte to nitrate form, nullifying the 

production of Cl spectral- and matrix-based polyatomic interferences. Finally, the Cu, Fe and Zn 

fractions were taken up in 1 ml, 5 ml and 1 ml of 2% (0.317 mol l-1) HNO3, respectively, from which 

dilutions to the desired concentration could then be made. 

 

Mass spectrometry 

Isotopic determinations for the three elements were performed on a ThermoFinnigan Neptune Plus 

MC-ICP-MS, housed at the Australian National University. Samples analysed on the ThermoFinnigan 

Neptune at CSIRO/University of Adelaide used an identical set up with marginally lower (80–90%) 

sensitivity. The mode of introduction into the mass spectrometer is critical; dry plasma and collision 

cell techniques are strongly susceptible to matrix effects, requiring very rigorous separation 

techniques as a result (Kehm et al. 2003, Weyer and Schwieters 2003, Archer and Vance 2004, 

Mason et al. 2004b). In this work, the ample concentration of Cu, Fe and Zn in igneous rocks permits 

use of the ThermoFinnigan Stable Introduction System (SIS) (Weyer and Schwieters 2003), which 

consists of a 50–100 μl min-1 low-flow glass nebuliser connected to a Scott-double pass quartz 

cyclonic spray chamber. The set-up facilitates greater stability and fewer nitride interferences with 

respect to desolvating nebulisers (Weyer and Schwieters 2003, Dauphas et al. 2009b). While Jet- 

(sample) and X-cones (skimmer) provide up to three times higher sensitivity at low and high masses, 

respectively, their larger apertures also increase the transmission of polyatomic molecules (such as 

ArO+), with respect to the analyte element (Weyer and Schwieters 2003). As instrument sensitivity is 

not an issue, standard cones (sample) and H-cones (skimmer) were used in all cases, although X-

cones may be considered in conjunction with medium resolution. Measurements for all elements 

were performed in static mode (no amplifier rotation), with the simultaneous measurement of up to 

seven masses (Table 2). 

 

Copper: Separated copper fractions were diluted to 300 ng ml-1 solutions, and spiked with 300 ng ml-

1 of Ni to correct for mass bias. Measurements were made in low-resolution mode, due to the 

absence of isobaric interferences on the Cu or Ni masses. Six masses were measured: 60Ni, 62N, 63Cu, 
65Cu, 64Zn and 66Zn (Table 2). With the LR slits, the achievable sensitivity was typically 20 V 65Cu/ppm 

and 2 V 62Ni/ppm, yielding 7 V and 0.7 V at 300 ppb, respectively. Each cycle consisted of an idle time 

of 1 s and an integration over the peak centre of 4.194 s, with each analysis comprising forty cycles. 
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Under such conditions, the measurement repeatability was ± 0.02‰ (2s) on the Ni-corrected 
65Cu/63Cu ratio. 

 

 Iron: Purified Fe cuts were diluted to 4 µg ml-1 solutions of Fe, and spiked with 8 µg ml-1 of 

Ni. 54Fe, 56Fe, 57Fe, 60Ni and 61Ni were measured, and 53Cr (Table 2) was monitored to correct for any 
54Cr interference on 54Fe, although the efficient chromatographic separation of these elements 

meant that this correction was insignificant. Typical 53Cr/54Fe ratios were 10-5 to 10-6, well below the 

threshold of 10-1 at which the interference correction breaks down (Dauphas et al. 2009b). The SIS 

arrangement does not appreciably reduce 40Ar14N+ and 40Ar16,17O+, on masses 54Fe, 56Fe and 57Fe, 

necessitating the use of medium resolution slits to resolve between iron ions and the argide 

interferences (Weyer and Schwieters 2003). The ensuing mass resolution  = 9000 in 

MR produces a plateau on 56Fe, the narrowest plateau, of 200–250 ppm, given by  

(Poitrasson and Freydier 2005). In MR mode, the sensitivity on 57Fe is approximately 0.25 V/ppm, 

and 0.125 V/ppm 61Ni. A Ni spike was used to characterise and correct for mass bias effects. Even 

though the sample and skimmer cones are manufactured from Ni, they appear to have a minimal 

contribution to the measured 61Ni/60Ni ratios (Dauphas et al. 2009b, Moynier et al. 2007, Steele et al. 

2011). Consistent with Poitrasson and Freydier (2005), improving the standard deviation for 61Ni/60Ni 

measurements by increasing the Ni signal has a marked influence on the precision of the Ni-

corrected 57Fe/54Fe and 56Fe/54Fe ratios, and, accordingly, the beam size was kept at or above 1 V 
61Ni (see section "Measurement repeatability"). Each cycle consisted of an idle time of 1 s and an 

integration over the peak centre of 4.194 s, with forty-five cycles per analysis. An (in-run) 

measurement repeatability of ± 0.03‰ (2s) could be achieved on the Ni-corrected 57Fe/54Fe ratio. 

Given the isobaric interference of 58Ni on 58Fe, this mass was omitted from the measurements. 

 

Zinc: The purified zinc column fractions were diluted to 300 ng ml-1 solutions and spiked with 300 ng 

ml-1 of Cu. In total, seven masses were measured: 63Cu, 64Zn, 65Cu, 66Zn, 67Zn and 68Zn, while 62Ni was 

monitored to correct for the 64Ni interference on 64Zn (Table 2), but was proven to be insignificant 

(62Ni/64Zn < 5 x 10-4). As per Cu isotope determinations, the absence of isobars or polyatomic species 

on the Zn and Cu masses rendered the use of low resolution slits possible. Average sensitivity for 
64Zn was 13 V/ppm, lower than that of Cu under identical conditions, despite the higher relative 

abundance of 64Zn (48.63 % vs. 30.83 %), consistent with the higher first ionisation energy of Zn (9.4 

vs. 7.7 eV). Each cycle consisted of an idle time of 1 s and an integration over the peak centre of 

4.194 s, with forty per analysis. Under such conditions, the measurement repeatability was ± 0.02‰ 

(2s) on the Ni-corrected 66Zn/64Zn ratio. 
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In each case, an instrumental baseline correction, which consisted of fifteen cycles with integration 

times of 1 s, was performed before every sample and calibrator. Following Schoenberg and von 

Blanckenburg (2005) and Dauphas et al. (2009), the concentration of the sample with respect to the 

calibrator, , was typically matched to within 10%. However, concentration 

matching is less important where an external elemental spike is used to correct for mass bias. 

 

Results and discussion 

Isotopic values of reference materials 

A summary of the salient characteristics of a selection commonly used Cu, Fe and Zn isotope 

procedures that are tailored towards rock matrices is given in online supporting information. The Cu, 

Fe and Zn isotope composition of the geological reference materials analysed in this work are shown 

in Table 3. A literature comparison of the three most commonly analysed RMs (BIR-1; BCR-2; BHVO-

2) emphasising differences in the mass bias correction, instrument used and the number of analyses 

is presented in Figure 1. 

 

The δ65Cu values range from +0.09‰ ± 0.05 (Canyon Diablo) to -1.57‰ ± 0.09 (Allende CV3), with 

terrestrial basalts bracketing the NIST SRM 976 certified reference material at -0.00‰ to +0.08‰, 

consistent with previous studies which highlight the constancy of Cu isotopic composition in igneous 

rocks from Earth ((Archer and Vance 2002, Ben Othman et al. 2006, Li et al. 2009, Moeller et al. 

2012, Liu et al. 2014). δ65Cu values for the extra-terrestrial materials, Allende and Canyon Diablo, 

agree within uncertainty with published values by Luck et al. (2003), Moynier et al. (2007) and 

Williams and Archer (2011). The Zn mass bias correction scheme is more common, with Ni starting 

to become prevalent, with no obvious bias between the two (Figure 1). The JG-2 granite and PCC-1 

peridotite reference materials contained insufficient copper to measure the isotope ratio using our 

protocol. 

 

The iron isotopic compositions of the reference materials used in this study are well characterised 

(Figure 1). The prevalence of the simple CSB approach is unsurprising given the ease of separation 

and abundance of iron. We report the first RM data using a Ni spike for mass bias correction. While 

all the data overlaps, the generally larger uncertainties associated with analyses using CSB are 

conspicuous (Figure 1). Notably, our data for the three basaltic rocks compares favourably with 

values produced using the double-spike technique of Millet et al. (2012) (Figure 1). The importance 

of a careful double-spike calibration is highlighted by the analyses of Dideriksen et al. (2006; ‘25’, 

Figure 1). A 0.3‰ range in δ57Fe for Canyon Diablo (Table S1 online supporting information) may be 
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due to inhomogeneity, specifically, variable abundances of kamacite and taenite, as these two 

phases have significantly different isotopic compositions (Poitrasson et al. 2005, Williams et al. 

2006). We also present new iron isotope compositions for two other geological reference materials, 

Japanese granite, JG-2 (δ57Fe = +0.26‰ ± 0.02) and Cody Shale, SCo-1 (+0.04‰ ± 0.02). 

Even though the newly developed IRMM-3702 certified reference material was used as the 

bracketing calibrator in this study, we reference our results against the JMC-Lyon reference value, as 

has been the custom (though both values are given in Table 3). The conversion factor between the 

two reference materials (Cloquet et al. 2008, Petit et al. 2008, Moeller et al. 2012) agrees with our 

own comparison (∆66Zn3702-JMC = +0.30‰ ± 0.02, n = 10): 

 

 δ66Zn3702 = δ66ZnJMC + 0.30       (2) 

 

As revealed by previous workers (Archer and Vance 2004, Ben Othman et al. 2006, Chapman et al. 

2006, Chen et al. 2013), the Zn isotopic composition of basaltic rocks is constant to between δ66Zn = 

0.2 to 0.3‰. The basalts analysed followed this norm, spanning a narrow range from 0.20‰ ± 0.03 

(BIR-1) to 0.27‰ ± 0.02 (BHVO-2). Intriguingly, however, the granite JG-2 exhibited a significantly 

more 66Zn-enriched composition, at +0.50‰ ± 0.02, suggesting a degree of Zn isotope fractionation 

during magmatic differentiation (Chen et al. 2013) as observed for Fe isotopes (Teng et al. 2008, 

Schuessler et al. 2009, Sossi et al. 2012). Additionally, the San Carlos olivine showed a marginally 

lighter δ66Zn composition (δ66Zn = 0.10‰ ± 0.03), consistent with the role of fractionating mafic 

phases increasing the relative abundance of heavier isotopes in the residual melt. Our value for the 

Allende CV3 carbonaceous chondrite, 0.22‰ ± 0.03, was indistinguishable from that of terrestrial 

basalts and other measurements of the meteorite (Luck et al. 2005, Makishima and Nakamura 2013, 

Table S1–3 online supporting information). Other literature data shows that the CSB + Cu correction 

is most widely used, with no systematic difference between instruments or methodologies, though 

the smaller uncertainty for samples in this study is notable. Analysis of BHVO-2 and BCR-2 using a 

double spike (Moeller et al. 2012 - ‘1’, Figure 1) are the heaviest reported for these RMs. 

Crucially, column yields for all samples and over each analyte element totalled 100%, precluding any 

mass fractionation on the resin (see section 'Fractionation during elution'). 

 

Repeatability 

Measurement repeatability: Through repeat analyses of the same sample aliquot, the uncertainty of 

the mean across a small number of replicate analyses are described by the 2 standard error: 
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2SE = (t95 x s)/ √n        (3) 

For a small populations (n < 15), a correction factor, which varies with n and the confidence limit 

(Student’s t factor) is used to account for the small n by multiplication with the standard deviation, s. 

 

The measurement repeatability is controlled by counting statistics, where the relative standard 

deviation (RSD) of an ion beam, I, is proportional to 1/√I. For ratios where both isotopes have a 

strong signal (several volts), the dependence of the error on the signal is weak (Figure 2b, d, e, f). 

However, for the 61Ni/60Ni (and to a lesser extent, the 62Ni/60Ni ratio) where the beam intensities are 

≈ 1 V, the effect is enhanced. The RSD on 57Fe/54Fe decreased from 5.5 x 10-3 at 0.25 V 61Ni to 3.3 x 

10-3 at 1 V 61Ni, corresponding to a 50% decrease in the measurement repeatability and a 25% 

improvement from 0.5 V. Thus, the limiting factor is the intensity of the Ni signal and therefore the 

precision of the Ni mass bias correction on Cu and Fe isotopes, where 62Ni and 61Ni should be ≥1 V, 

respectively.  

Following Poitrasson and Freydier (2005), the summative uncertainty on the precision of a sample 

analysis is given by its individual 2SE derived from repeat analysis of that sample, rather than 

assigning a global uncertainty to the procedure. This specificity can reveal whether a particular 

sample was measured less precisely, caused by issues with the sample matrix or introduction, or 

sudden changes in the plasma conditions. 

The long-term measurement repeatability on the Milhas haematite reference material (Pyrénées, 

France; Williams et al. 2005 Sossi et al. 2012, Poitrasson et al. 2013), which was not processed 

chemically and analysed multiple times over the course of 12 months, was δ57Fe = +0.78‰ ± 0.03 

(2s) or ± 0.01‰ (2SE, n = 9). 

 

Measurement reproducibility: The entire uncertainty on a sample analysis includes both 

components related to the mass spectrometry ('internal') and the sample processing ('external', i.e., 

anion exchange chromatography and wet chemistry). Assuming the external component to be 

negligible, the external should approach the measurement repeatability. In order to identify the 

sources of uncertainty for each stage of the procedure, six separate dissolutions of BHVO-2 of 10–50 

mg, were processed (Table 4). 

 

In contrast to the measurement repeatability, the measurement reproducibility of the Fe isotope 

determinations was better with respect to Cu and Zn. That is, the chemical processing of BHVO-2 

imparts more variability on the isotopic measurement of Cu and Zn than for Fe. This may be ascribed 

to their relative abundances in BHVO-2, where Fe (10% m/m) constitutes a major fraction of the 
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rock, while the former two are relatively impoverished (≈ 100 µg g-1). Given the large dilutions 

(typically 500x) required to measure Fe compared with Cu and Zn (1-5x), not only are the 

analyte:matrix and analyte:blank ratios more favourable, but the presence of residual resin-based 

organics and other cryptic differences between sample and standard solutions are diminished. 

In Table 4, the average, standard deviation (multiplied by 2; 2s) and 2SE have been calculated by 

pooling all analyses (‘pooled’), and by considering each dissolution as a single value (‘replicates’). 

The standard deviation describes the spread of the data rather than the uncertainty on the mean 

value. Equation (3), dictates that, as the number of analyses goes to infinity, the 2SE asymptotically 

approaches 0. However, because the 2SE is based on assumptions involving the degree of 

uncertainty (95% confidence in this case) and the number of replicate analyses, n, we also quote the 

standard deviation as the most fundamental measure of data precision. 

 

To predict the expected 2SE reproducibility we employed a statistical modelling technique. In this 

approach, a pseudo-random number was generated about the seed mean value (here, δ57Fe = 

0.20‰) with the known standard deviation (± 0.03‰ 2s; Table 4) for twenty samples, and 2 < n < 10. 

With increasing n, the calculated 2SE reproducibility declines proportional to 1/log from ± 0.03‰ at 

n = 2 to 0.01‰ at n = 10 (Figure 3a). The mean values of the BHVO-2 replicates plot within the 2SE 

uncertainty calculated for n = 2 (Figure 3b). The 2s reproducibility from the 1 V Ni signal (± 0.03‰, 

for δ57Fe) is a 25% improvement over the ± 0.04‰ reported by Poitrasson and Freydier (2005) for a 

0.5 V signal, mirroring the measurement repeatability (Figure 2). Thus, the uncertainties associated 

with this method are identical to those achieved by the double-spike technique (± 0.02‰ 2s δ56Fe; 

Millet et al. 2012).  

A measurement reproducibility (2SE) of ± 0.02‰, ± 0.02‰ and ± 0.03‰ for δ65Cu, δ57Fe, and δ66Zn 

(2s of ± 0.03‰, ± 0.04‰ and ± 0.06‰, respectively) accurately described the uncertainty after four 

repetitions. 

 

Anion exchange chromatography 

Exchange capacity: Due to the finite number of exchange sites on the resin (1 meq ml-1 or mmol ml-1 

for AG resins), loading excessive amounts of solute can result in premature elution of an element, a 

consequence of the inability of the entire budget of dissolved species to diffuse to a vacant exchange 

site on the resin at the imposed flow rate, causing an isotopic fractionation. Chapman et al. (2006) 

determined the breakthrough capacity for the manganese nodule NOD-P-1 on AG-MP-1 to be 20% of 

the theoretical exchange capacity. However, the breakthrough point is both element- and lithology-

dependent. Therefore, five BHVO-2 powder masses ranging from 10–50 mg were dissolved to better 
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constrain the resin breakthrough point for Cu, Fe and Zn for common basaltic matrices with ≈ 10% 

m/m Fe (Table 4, Figure 4). 

 

Apparent is the substantial departure from the δ65Cu mean for the ≈ 50 mg sample (Table 4), 

indicating a preferential loss of the heavier isotopes of Cu during the loading step, prior to Cu elution 

(see section 'Fractionation during elution'). The breakthrough threshold for δ65Cu for basaltic 

samples is tentatively placed at 40 ± 10 mg, equating to 0.06 ± 0.02 meq ml-1, or only 6% of the total 

theoretical capacity, considering that the only sorbed major element matrix species in 6 mol l-1 HCl is 

Fe3+ (Mg, Ca, Al have no affinity for the resin). Iron is more robust, as, even at 50 mg of dissolved 

BHVO-2, its isotopic composition remains unperturbed (Figure 4). However, tests on 70 mg of PCC-1 

revealed Fe present in the matrix/load fraction. If the Fe breakthrough point is dependent only on 

the Fe content of the sample, this equates to 0.074 meq ml-1 for PCC-1, but higher than 0.08 meq ml-

1 for BHVO-2. This discrepancy points to the effect of other, non-sorbing cations, such as Mg, Ca and 

Al. All BHVO-2 analyses of the δ66Zn composition lay within 2SE uncertainty of one another at all 

dissolution masses (Figure 4). However, the δ68Zn value for the 50 mg dissolution is non-mass 

dependent (Table 4), possibly a product of sample overloading. It should be noted that these tests 

apply only to 1 ml AG1-X8 and the protocol given in Table 1, increasing the resin volume will permit 

more solute to be loaded. 

 

 Resin structure: To evaluate the effect of cross-linking on elution, 1 ml of each of AG1-X4 

(200–400 mesh), AG1-X8 (200–400 mesh) and AG-MP-1 (100–200 mesh) was loaded in identical 

columns (0.8 cm diameter, 4 cm bed height BioRad® PolyPrep columns). Independent of the resin, 

altering the aspect ratio of the resin bed also modifies chromatographic separation characteristics. 

This variable was investigated by loading custom-made heat-shrink Teflon columns, 0.4 cm in 

diameter with 1 ml of AG1-X8, 200–400 mesh, creating a ≈ 7 cm resin bed, representing a decrease 

in aspect ratio from 0.2 to 0.057. 

 

Elution curves for Cu, Fe and Zn from BHVO-2 in AG1-X4, AG1-X8 and AG-MP-1 are shown in Figure 

5. The techniques for AG-MP-1 and AG1-X4 were adapted from Maréchal et al. (1999) and Strelow 

(1980), respectively. All three strongly basic anion exchange resins were able to separate the three 

analyte elements from each other and the matrix. However, in detail, subtle differences between 

them were revealed. 

The effectiveness of the separation of two elements is given by the ratio of their partition 

coefficients between the resin and the solvent (DM1
R–S/DM2

R–S, the separation factor). During Cu 
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elution, a higher DFe/DCu ratios more favourable, as the intention is to retain Fe, a condition best 

fulfilled by the 4% and 8% cross-linked resins (Figure 6). In 8 mol l-1 HCl, the DZn value for AG1-X4 was 

75 and resulted in premature loss of zinc (about 10%), especially with a high matrix load on the 

column (Figure 5c, Chapman et al. 2006). While DZn for AG-MP-1 in 7 mol l-1 HCl was 

indistinguishable from that of 6 mol l-1 HCl for AG1-X8, the lower DFe/DCu ratio of AG-MP-1, reflecting 

the much higher DCu (40 compared with ~16 for AG1-X4 and AG1-X8), resulted in a broad Cu elution 

peak, requiring 20 ml of acid (Figure 5a; Maréchal et al. 1999), compared with 14 for AG1-X8 and 10 

for AG1-X4. Iron needs to be eluted in higher molarity HCl in AG-MP-1 to prevent the co-elution of 

Zn, which occurs in weak HCl (Figure 5). For these reasons, we suggest that the separation of Cu, Fe 

and Zn from complex matrices and Fe is best achieved using AG1-X8 (200–400 mesh). 

 

The higher density of exchange sites on the macroporous AG-MP-1, which coat the macro- as well as 

micropores, should theoretically offer improved separation over solely microporous resins (AG1 

series) in spite of its higher degree of cross-linkage (20–25%; (Kraus and Nelson 1958, van der Walt 

et al. 1985). In practice, the efficiency of species exchange between the mobile phase and the resin, 

which can be estimated by the kurtosis of the elution curve for a given element, appears to increase 

in the order AG-MP-1 < AG1-X8 < AG1-X4 (Figure 5). This is largely attributable to the coarser particle 

size of AG-MP-1 (100–200 mesh; 0.075–0.15 mm). The 200–400 mesh version would likely represent 

an improvement over the equivalent AG1 resins and would be the preferred choice, although it is 

twice as expensive. 

 

The improvement in both the sharpness of the elution peaks and their separation is evident when 

comparing AG1-X8 in the high aspect ratio Teflon columns (0.4 x 7 cm) to the standard BioRad® Poly-

Prep columns (0.8 x 4 cm) (Figure 5b, d). Consequently, the volume of acid required was halved from 

34 to 17 ml, decreasing the blank contribution. The tailing of the elution peaks, particularly 

problematic for Cu, was also much reduced. These column dimensions and method were adopted as 

the preferred procedure. 

 

The possibility of incomplete Cu recovery due to elution in the Fe fraction (Moeller et al. 2012) was 

observed for each of the AG resins, totalling 1–2% of the total eluted fraction. However, the 

reference data were in good agreement with that of previous studies (Figure 1) suggesting that this 

minor fraction has no impact on the isotope composition of the purified sample. 

The blanks in the Cu, Fe and Zn elutions were of the order of 1 ng, 10 ng and 2 ng, respectively. 

Relative to the amount processed through the columns, (Cu ≈ 3000 ng; Fe ≈ 2 x 106 ng; Zn ≈ 3000 
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ng), such amounts had no effect on the measured isotopic composition. This compares with 0.15 ng 

of Cu, 6 ng of Fe and 0.4 ng of Zn in the same volume of double distilled 2% v/v HNO3. Possible 

sources of increased blank contribution over the 2% nitric acid include acquisition during the 

evaporation step, and leaching of inorganic elemental species, particularly Zn, from the AG resins 

(Shiel et al. 2009). 

 

Fractionation during elution: Ion exchange chromatography is predicated on the variations in 

speciation of an element in the solvent phase as a function of its concentration. Differential elution 

of an element occurs when its complexes have different selectivities for the resin. These species may 

also harbour different isotopic compositions. The fingerprint of isotopic fractionation resulting from 

incomplete yields is characterised, and potential mechanisms for this are investigated. 

 

During sample preparation in contact with air and an oxidising acid (HNO3), copper and iron should 

exist in their cupric (2+) and ferric (3+) states, respectively, while Zn is invariably 2+. In aqueous 

solutions of changing chloride molarity, first row transition metals display similar tendencies. 

Namely, at low [Cl-] activities, the metal cations are octahedrally co-ordinated in hexa-aquo ligand 

structure with a general form of (Mx+Cln(H2O)6-n)(x-n), where 0 ≤ n ≤ 4 (Borrok et al. 2007). As the 

activity of [Cl-] increases, the charge on the metal-bearing complexes becomes more negative as 

chloride ligands predominate, increasing its selectivity for the anion resin, consistent with the 

monotonic increase in DR-S
M

x+ observed experimentally (Kraus and Nelson 1958, van der Walt et al. 

1985). The speciation of Cu, Fe and Zn in HCl is summarised by Borrok et al. (2007, their figs. 4, 5 and 

6). 

 

Maréchal and Albarède (2002) found a difference in δ65Cu of ≈ 19‰ and ≈ 24‰ between the first 

and last ml quantities eluted in 7 mol l-1 HCl and 3 mol l-1 HCl respectively on AG-MP-1. Liu et al. 

(2014) found a much smaller fractionation of δ65Cu ~5‰ using 8 mol l-1 HCl and the same resin. Zinc 

isotopes show reduced fractionation, ≈ 1.3‰ δ68Zn (or about 0.65‰ δ66Zn) in 12 mol l-1 HCl 

(Maréchal and Albarède 2002). In contrast, neither Cu nor Zn showed discernible fractionation when 

eluted with 0.5 mol l-1 HNO3, implying that chlorocomplexes are particularly effective in inducing 

isotope fractionation. For iron, Anbar et al. (2000) record a +10‰ difference in the δ57Fe values of 

the first and last elution cuts in 2 mol l-1 HCl. Roe et al. (2003) identified that the flow rate can affect 

the magnitude of the fractionation, with δ57Fe values changing by ≈ 3‰ at 3 ml min-1, whilst at 

typical analytical rates of 0.3 ml min-1, this increases to ≈ 8‰. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The vector of fractionation is common to all three elements–in HCl, the initial fractions are invariably 

characterised by heavier isotope compositions. This may be reconciled with the relative covalent 

bond strength of Cl- and H2O ligands, as predicted by the spectrochemical series, where H2O > Cl-. 

The net result being that the VIFe3+-O is shorter (≈ 2.1 Å) than the IVFe3+-Cl bond (≈ 2.25 Å; Apted et 

al. 1985). These systematics hold for Cu2+, though the Jahn-Teller distortions magnify the disparity in 

bond lengths around octahedrally-co-ordinated Cu, from VICu-Oeq = 1.95 Å and VICu-Oax = 2.3 Å to 
VICu-Cleq = 2.3 Å and VICu-Clax = 2.85 Å (D’Angelo et al. 1997), likely contributing to the larger isotopic 

fractionation observed for copper (Maréchal and Albarède 2002). Thus, octahedrally-co-ordinated 

metal hexa-aquo complexes (Mx+(H2O)6)x, which, due to their positive charge, do not bind to the 

resin, concentrate the heavier isotopes (Hill and Schauble 2008, Black et al. 2011). The more 

strongly-sorbed tetrahedral compounds, such as FeCl4
-
 have lighter isotopic compositions and are 

eluted later (Schauble et al. 2001). 

In our experiment, performed by eluting Fe in 0.5 mol l-1 using AG1-X8 (200–400 mesh) resin at 

typical analytical flow rates of 0.2 ml min-1, a total range of 3.7‰ was observed (Figure 7) where the 

1st ml had δ57Fe = +1.90‰ ± 0.03 while the last fraction had δ57Fe = -1.78‰ ± 0.05. 

 

The difference between this experiment and that of Roe et al. (2003) is the HCl molarity. As the 

abundance of the FeCl4
- complex decreases with decreasing aCl-, it should constitute a smaller 

proportion of the extant iron complexes at 0.5 mol l-1 compared with 2 mol l-1. Since the isotopic 

fractionation results from the equilibrium exchange between the sorbed FeCl4- and the eluted 

(FeCln[H2O]6-n)(3-n) neutral and cationic complexes, the presumed absence of the anionic species 

below 1 mol l-1 HCl should result in negligible fractionation (Anbar et al. 2000). However, although 

the magnitude of the fractionation is diminished, it is non-zero, implying the persistence of FeCl4
- to 

at least 0.5 mol l-1. 

 

This result highlights the requirement for 100% yield in all cases. The summative composition of 

BHVO-2 was δ57Fe = +0.24‰ ± 0.12, in agreement with the value reported in Figure 1, indicating 

100% yield. Therefore, if the Zn contents of the sample are low compared with iron, then iron should 

be eluted in very weak (e.g., 0.05 mol l-1) HCl to expedite elution and minimise the possibility of 

column-based fractionation. 

 

Mass bias correction 

Mass bias, quantified by the β factor (Equation 5), is comprised of instrumental mass bias 

(preferential transmission of ions with higher mass/charge) and space-charge effects, which are 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

induced by differences in matrices between sample and calibrator. Simple calibrator-sample 

bracketing (CSB) readily accounts for the first effect whereas external element spiking has been 

widely used to alleviate mass bias imposed by matrix effects. This method is based on the 

assumption that the element spike undergoes the same type of mass bias as the analyte element (β' 

= β''). In practice, this is not the case due to differences in mass and ionisation potential (Hirata 

1996), and, as such, its application is strongly debated (Maréchal et al. 1999, Woodhead 2002, 

Archer and Vance 2004, Arnold et al. 2004, Poitrasson and Freydier 2005, Baxter et al. 2006, Peel et 

al. 2008), with two correction schemes predominating. 

 

Empirical external normalisation (EEN): The realisation that β'/β'' is constant over short time 

periods gave rise to empirical external normalisation (EEN; Maréchal et al. 1999). The linear arrays 

formed by the isotope ratios of the spike and analyte in log-log space enable the β factor for the 

analyte to be determined empirically. The exponential and power law forms of the generalised 

power law, in contrast to the linear form, are consistent with respect to the ratios of ratios. In other 

words, considering that M1/Mn and M2/Mn adhere to the generalised power law, then M2/M1 will 

also exhibit a proportional mass-dependence. Importantly, Maréchal et al. (1999) demonstrated that 

mass discrimination between two elements could be best described by the exponential law 

(Equation 4), on the basis of its prediction that the β factor of an isotope ratio scales with its relative 

mass difference (Equation 5), as opposed to the mass independence as predicted by the power law. 

The exponential law may be written as: 

 

 

 
(4) 

 

Where R' is the true ratio of (analyte) isotope pairing, r' is the measured ratio of that pairing, M'2 is 

the mass of the isotope in the numerator, M'n is the mass of the normalising isotope, and β' is its 

mass bias (β) factor: 

 

 

 

(5) 

 

Taking the natural logarithm of Equation (4) for an analyte ratio (r') and a spike ratio (r''), and 

dividing the former by the latter results in the relationship: 
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(6) 

 

In a plot of ln r' against ln r'', the slope is dependent only on the ratios of the two β factors, which 

are a function of the two measured ratios. Slopes in log-log space most closely resemble those 

estimated according to the exponential law. However, because the β factor is calculated empirically 

from the slope, an a priori assumption as to the type of law is unnecessary. The intercept is 

equivalent to the entire RHS of Equation (6), though it cannot be directly used to estimate the true 

isotope ratio, as the assumption that β'/β'' = c breaks down away from the ideal operating 

conditions of the ICP-MS. As such, the intercept is not incorporated into solving for R'smp (although 

see Baxter et al. 2006).  

 

 

(7) 

 

Equation (7) quantifies the vertical deviation of the samples (represented by r''smp) from the line in ln 

r' – ln r'' space defined by the calibrators, and assuming that the samples follow the same general 

slope. 

 

  External substitution (ES): This correction replaces β' in Equation (4) with the β factor 

calculated for a second isotope pairing of the spike element, β'' (Longerich et al. 1987, Hirata 1996). 

As only the relative deviation with respect to a calibrator is required to calculate the δ value of the 

unknown, rather than solving for R' in Equation (4), we effectively solve for R'smp/R'cal. Since the same 

β'' for β' substitution is made to the bracketing calibrators too, the relative deviation of the samples 

from the calibrators (the δ value) is unaffected. 

 

Equation (6) may be re-written for the analyte ratio in the calibrator and the sample: 

 

 

 

(8) 
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Given that β' ≠ β'' the absolute value of R for both calibrator and sample is systematically offset from 

its true value. 

 

It is clear from Equation (8) that the assumption is not β' = β'', but rather: 

 

 

 
(9) 

 

Mathematically, in solving for β'smp, this β factor may be used in conjunction with β'std in Equation (4) 

not only to yield an accurate δ value, but also to correct the sample back to its absolute ratio. In 

practice this is never achieved because of the disparate behaviour of the two elements in the ICP-

MS. 

 

We prefer the ES to the EEN method. Previous studies that compare the correction schemes report 

no systematic bias associated with either (Wombacher et al. 2003, Mason et al. 2004a, Poitrasson 

and Freydier 2005, Peel et al. 2008, Petit et al. 2008). Since there is no mathematical uncertainty 

associated with a direct substitution of β' for β'' (Equation 8), ES can be applied as effectively as the 

EEN correction. Due to the stability of the plasma during an analytical session, the formation of a 

reasonable linear relationship between (r') and the spike ratio (r''), required for the application of 

the EEN, is seldom achieved, as reported in other studies (Woodhead 2002, Kehm et al. 2003, Archer 

and Vance 2004, Peel et al. 2008). Instead, what drift occurs typically does so as discontinuous jumps 

in β'/β''. The more specific ES correction, which is applied individually to each sample and calibrator, 

is therefore able to correct for short-term irregularities in the mass bias. In an EEN, such an 

anomalous point would contribute to the scatter in the slope, and we consider it counterproductive 

and at times inaccurate to utilise a method that is dependent on plasma instability. 

 

Element-specific considerations 

Copper: Although the majority of Cu isotope protocols use Zn as the external element (Maréchal et 

al. 1999, Archer and Vance 2004, Mason et al. 2004a, Chapman et al. 2006, Peel et al. 2008) we 

advocate the use of Ni instead. Namely, 62Ni/60Ni is the preferred pairing, given that 62Ni is more 

abundant than 61Ni (see section 'Measurement repeatability'). Spiking Cu solutions with Ni has been 

reported by Ehrlich et al. (2004), Larner et al. (2011), Li et al. (2009), Markl et al. (2006), Moeller et 

al. (2012) and Thompson et al. (2013). The advantages in using Ni over Zn are two-fold: 

1. The first ionisation potential of Ni closely matches that of Cu (7.6 vs. 7.7 eV, respectively) 

whereas that of Zn is substantially higher (9.4 eV), resulting in similar β factors for Cu and Ni but not 
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for Zn. This is indicated by slopes of ≈ 1 in ln(65Cu/63Cu) vs. ln(62Ni/60Ni) space (Figure 8), compared 

with slopes ≠ 1 when plotted against ln(66Zn/64Zn) (Archer and Vance 2004, their figure 1). 

2. The cleaner mass spectrum of Ni over Zn. The effects of Ti- and Cr-based isobars, particularly 
48TiO+ on the Zn masses are well-documented, leading to variability on the Zn-corrected δ65Cu of up 

to several per mil (Petit et al. 2013, 2008), interferences that do not befall Ni. The 64Zn1H+ 

interference on 65Cu under wet plasma conditions (Mason et al. 2004b), can lead to spuriously high 

δ65Cu ratios. The degree of hydride formation monitored herein was approximately 0.001 mV per µg 

ml-1. For 300 ng ml-1 Zn, this equates to 0.0001 mV, or a 0.02‰ increase on the δ65Cu ratio for a 65Cu 

signal of 3 V. 

 

Of the possible polyatomic interferences on Cu masses, only those elements that are present at 

higher concentrations than copper (Na, Mg, Ti) present analytical difficulties, following their 

combination with O or Ar (Mason et al. 2004b, Petit et al. 2008, Liu et al. 2014). Each of these 

elements is theoretically quantitatively removed within the first 4 ml of the elution (Figure 5). Typical 

signals of 23Na, 25Mg and 49Ti are approximately 0.02 V, 0.001 V and 0.0003 V respectively, which, 

given the degree of argide, oxide and hydroxide formation, have no discernible impact on the 

measured 65Cu/63Cu ratios within uncertainty (Petit et al. 2008). 

 

In our procedure, Co is not perfectly separated from the Cu fraction (Figure 5; though Liu et al. 2014 

reported complete separation using 8 mol l-1 HCl). Approximately half the Co budget is eluted in the 

matrix fraction, whereas Co and Cu co-elute in AG-MP-1 (this work; Li et al. 2009). In varying Cu/Co 

in an otherwise pure Cu solution, Li et al. (2009) and Liu et al. (2014), found no systematic difference 

in δ65Cu between Co-free solution and for solutions with Cu/Co ratios as low as 0.1, illustrating the 

insensitivity of Cu isotope ratios to the presence of cobalt. 

 

Iron: While we have shown the Ni spiking procedure (Poitrasson and Freydier 2005) to be capable of 

accurate and precise correction of iron isotope ratios, we also evaluate the Cu spiking, CSB and 

double spiking techniques. 

 

The major drawback of Cu spiking is that the mass dispersion on the Neptune is insufficient to 

facilitate simultaneous collection of masses 53Cr to 65Cu. Instead, a peak-jumping procedure is 

necessary, hence increasing analysis time and inherently degrading the reproducibility of data 

obtained. Nevertheless, the Cu-spiking tests of Dauphas et al. (2009) and Schoenberg and von 

Blanckenburg (2005) showed no systematic offset from CSB. Indeed, our measurements using Ni 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

spiking agree closely with the Cu-corrected values of USGS basalts by Weyer and Ionov (2007) 

(Figure 1). 

As highlighted by Malinovsky et al. (2003), the accuracy of CSB measurements requires matching the 

analyte, acid molarity, and the purity of the matrix between sample and calibrator. The former two 

are readily achieved, but matrix-matching less so. In aid of this, Dauphas et al. (2004) enlist two 

passes through the resin to yield a solution of the requisite purity for analysis. As long as these 

safeguards are observed, precise and accurate data for each of the iron isotopes, including 58Fe, can 

be attained by calibrator-sample bracketing alone. Evident from the data compilation (Figure 1), 

however, is the larger uncertainty in the measurement, even though there are no systematic offsets. 

 

Double spiking is an attractive alternative to external element spiking, and, if the spike is added to 

the sample prior to column processing, can correct for any resin-induced isotopic fractionation in 

addition to mass bias. The 57-58Fe double spike protocol employed by Millet et al. (2012) has a 2s 

measurement reproducibility of ± 0.02‰ δ56Fe (after 2–4 analyses); the most precise Fe isotope 

methodology to date (along with our own), owing, in large part, to the robustness of the mass bias 

correction. The only possible pitfalls are the initially laborious spike mixing and calibration. 

We preferred to use the 57Fe/54Fe ratio because the 57Fe shoulder is about 1.5 times wider (300–350 

ppm) than that of 56Fe, and therefore less prone to tailing effects from ArO+ (Weyer and Schwieters 

2003), which can result in systematic shifts in the co-linearity of the mass dependence between 

δ57Fe and δ56Fe if the magnet drift (shoulder position) is not closely monitored. 

 

Both 2% v/v HNO3 (0.317 mol l-1) and 0.05 mol l-1 HCl were used as the medium of introduction of Fe 

to the plasma. The rationale for using HCl over HNO3 is that it decreased the 40Ar14N+ interference on 
54Fe+, but since N occurs as an impurity in Ar anyway and the interferences were sufficiently 

resolved, there is no compelling reason to use HCl. Furthermore, 2% v/v HNO3 yields better washout 

times and signal stability (Schoenberg and von Blanckenburg 2005). 

 

Zinc: The Zn mass range is afflicted by numerous transition metal oxide polyatomic interferences 

(Mason et al. 2004b, Petit et al. 2008) that can affect the apparent mass-dependent relationship 

between isotope pairs. Of the matrix-based Ti-, Cr- and V-O+ and -OH+ interferences, the titanium-

based isobars represent the most likely source of error (Petit et al. 2013). In theory, all of the Ti, Cr, 

and V should be removed in the first 4 ml of the matrix elution. However, up to 5–10 mV signals of 
48Ti+ may be observed in the Zn fraction (0.002 <48Ti/64Zn < 0.004), compared with 1 mV in double 

distilled 2% v/v HNO3. The measured 48Ti16O+/48Ti+ ratio is of the order of 0.001–0.002 (0.1–0.2%) for 
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typical wet plasma conditions (Petit et al. 2013). We confirmed this oxide production rate through 

progressive addition of Ti to a pure 300 ng ml-1 Zn solution at 48Ti/64Zn ratios of 0.0007, 0.007 and 

0.07. On a 64Zn signal of ≈ 2 V, the δ66Zn value is decreased by 0.008‰ to 0.016‰ per 10 mV of 48Ti, 

both within the measurement repeatability (Figure 9). As such, it is recommended that the 48Ti/64Zn 

ratio be kept below 0.005 to prevent any systematic bias in the analysis. 

 

Even though Fe does not form any isobaric interferences on the Zn masses, its high abundance and 

similar behaviour on the anion exchange resin mean that it is frequently observed in purified Zn 

fractions at levels of up to 30 ng ml-1 (≈ 1 V 56Fe), with corresponding Fe/Zn ratios up to 0.1. By 

progressively doping a pure 300 ng ml-1 Zn solution with 30, 300 and 3000 ng ml-1 of Fe, we found 

that it has no effect on either the δ66Zn or the δ68Zn ratios for Fe/Zn values up to 10, in line with Petit 

et al. (2008). 

 

Conclusions 

In this study, the effect of resin cross-linking and column dimensions on the chromatography of Cu, 

Fe and Zn species on strongly basic anion exchange resin was systematically investigated. Their 

separation could be optimised using AG1-X8 (200–400 mesh) in conjunction with a column of 0.057 

width:height ratio, requiring half the total acid of conventional BioRad columns, resulting in a more 

time- and cost-effective separation. It is demonstrated that, although resin-induced isotopic 

fractionation does occur for Cu and Fe, provided the breakthrough point is not exceeded, the 

quantitative yields ensure that the procedure introduced no spurious results. This is substantiated by 

extensive comparison of reference materials analysed with this method to existing literature data, 

showing excellent agreement between a variety of methodologies for felsic to ultramafic matrices. 

Use of an external spike element to overcome mass bias effects, where the signals were sufficiently 

high to ensure good counting statistics, and when the correction was applied individually to each 

analysis of sample and their bracketing calibrators, yielded precise and accurate results. Importantly, 

the precision was improved owing to the efficiency of the mass bias correction and high sensitivity 

and stability of the ThermoFinnigan Neptune Plus MC-ICP-MS. Measurement reproducibility levels of 

± 0.03‰ for δ57Fe, ± 0.04 ‰ for δ65Cu and ± 0.06 ‰ for δ65Zn (all 2s) were obtained. 
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Figure Captions 

Figure 1. Compilation of δ65Cu, δ57Fe and δ66Zn data for the three most commonly analysed RMs 

(BIR-1, BHVO-2 and BCR-2). Also given are the weighted averages (black line) and their associated 1 

standard deviation (grey envelope). Numbers correspond to data sources (full list in online 

supporting information): 1. Moeller et al. (2012) 2. Archer and Vance (2002) 3. Bigalke et al. (2010) 

4. Moynier et al. (2010) 5. Li et al. (2009) 8. Liu et al. (2014) 9. Weinstein et al. (2011) 10. Wang et al. 

(2012) 11. Craddock et al. (2013) 12. Dauphas et al. (2009a) 16. Williams et al. (2005) 17. Weyer et 

al. (2005) 18.Schuessler et al. (2009) 19. Poitrasson et al. (2005, 2004a) 20. Schoenberg and von 

Blanckenburg (2006) 22. Hibbert et al. (2012) 23. Huang et al. (2011) 24. Zhao et al. (2012) 25. 

Dideriksen et al. (2006) 26. Chapman et al. (2009) 27. Craddock and Dauphas (2011) 28. Millet et al. 

(2012) 30. Archer and Vance (2004) 31. Chapman et al. (2006) 32. Cloquet et al. (2008) 33. Viers et 

al. (2007) 34. Toutain et al. (2008) 35. Sonke et al. (2008) 36. Herzog et al. (2009) 37. Bigalke et al. 

(2010) 38. Moynier et al. (2011) 41. Chen et al. (2013). 

 

Figure 2. Illustration of how the measurement repeatability on the external element spike corrected 

Cu, Fe and Zn ratios vary with (a) 62Ni intensity (b) 65Cu intensity (c) 61Ni intensity (d) 57Fe intensity (e) 
65Cu intensity and (f) 64Zn intensity. Note the log scale on the abscissa on parts (a) and (b). 

 

Figure 3: The measurement reproducibility of the δ57Fe value as modelled by pseudo-random 

number generation. (a) The change in the standard deviation and 2SE value as a function of 

repetitions (b) the mean value of these populations compared with the seed and the actual 

measurements. 

 

Figure 4. The variation in isotopic composition with the amount of sample passed through the 

columns. All samples fell within uncertainty of each other up to ≈ 50 mg, where δ65Cu was strongly 

negative (-2.03‰, off scale). 

 

Figure 5. Elution curves for Cu, Fe and Zn from BHVO-2 in (a) AG-MP-1 (100–200 mesh), (b) AG1-X8 

(200–400 mesh), (c) AG1-X4 (200–400 mesh) and (d) AG1-X8 (200–400 mesh) in 0.4:7 cm aspect 

ratio columns. X-scale is identical for each experiment. 

 

Figure 6. The separation factor for Fe and Cu against the partition coefficient of Zn for the resin are 

compared for AG-MP-1; AG1-X4 and AG1-X8 in 7, 8 and 6 mol l-1 HCl loading solution, respectively. 

Desired conditions occur at high DFe/DCu and high DZn, which was optimised in AG1-X8 resin. 
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Figure 7. Iron isotope fractionation associated with its progressive elution from the resin, taken at 1 

ml intervals. Superimposed on this is the curve showing the relative fraction of iron in each cut. 

 

Figure 8. The linear correlation between isotopes of copper (analyte) and nickel (external spike) in 

low resolution mode over 1.5 years (16/11/2011 to 4/5/2013) illustrating that the slope conforms to 

a value of 1, indicative of similar β factors. 

 

Figure 9: The effect of the 48Ti16O+ interference on the measured 66Zn/64Zn ratios as a function of 
48Ti/64Zn ratio. The different series correspond to different extents of oxide formation, which, at 

typical conditions, was around 0.2% of the 48Ti signal, shown by the data (black diamonds). The 

threshold of analytical uncertainty occurs at ± 0.03‰ (2SE). 
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